Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Comput Biol Med ; 143: 105233, 2022 Jan 29.
Article in English | MEDLINE | ID: covidwho-2282809

ABSTRACT

COVID-19 is a fast-spreading pandemic, and early detection is crucial for stopping the spread of infection. Lung images are used in the detection of coronavirus infection. Chest X-ray (CXR) and computed tomography (CT) images are available for the detection of COVID-19. Deep learning methods have been proven efficient and better performing in many computer vision and medical imaging applications. In the rise of the COVID pandemic, researchers are using deep learning methods to detect coronavirus infection in lung images. In this paper, the currently available deep learning methods that are used to detect coronavirus infection in lung images are surveyed. The available methodologies, public datasets, datasets that are used by each method and evaluation metrics are summarized in this paper to help future researchers. The evaluation metrics that are used by the methods are comprehensively compared.

2.
Systems ; 11(2):107.0, 2023.
Article in English | MDPI | ID: covidwho-2241463

ABSTRACT

After different consecutive waves, the pandemic phase of Coronavirus disease 2019 does not look to be ending soon for most countries across the world. To slow the spread of the COVID-19 virus, several measures have been adopted since the start of the outbreak, including wearing face masks and maintaining social distancing. Ensuring safety in public areas of smart cities requires modern technologies, such as deep learning and deep transfer learning, and computer vision for automatic face mask detection and accurate control of whether people wear masks correctly. This paper reviews the progress in face mask detection research, emphasizing deep learning and deep transfer learning techniques. Existing face mask detection datasets are first described and discussed before presenting recent advances to all the related processing stages using a well-defined taxonomy, the nature of object detectors and Convolutional Neural Network architectures employed and their complexity, and the different deep learning techniques that have been applied so far. Moving on, benchmarking results are summarized, and discussions regarding the limitations of datasets and methodologies are provided. Last but not least, future research directions are discussed in detail.

3.
Displays ; 73: 102235, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-2015119

ABSTRACT

The COVID-19 outbreak has extenuated the need for a monitoring system that can monitor face mask adherence and social distancing with the use of AI. With the existing video surveillance systems as base, a deep learning model is proposed for mask detection and social distance measurement. State-of-the-art object detection and recognition models such as Mask RCNN, YOLOv4, YOLOv5, and YOLOR were trained for mask detection and evaluated on the existing datasets and on a newly proposed video mask detection dataset the ViDMASK. The obtained results achieved a comparatively high mean average precision of 92.4% for YOLOR. After mask detection, the distance between people's faces is measured for high risk and low risk distance. Furthermore, the new large-scale mask dataset from videos named ViDMASK diversifies the subjects in terms of pose, environment, quality of image, and versatile subject characteristics, producing a challenging dataset. The tested models succeed in detecting the face masks with high performance on the existing dataset, MOXA. However, with the VIDMASK dataset, the performance of most models are less accurate because of the complexity of the dataset and the number of people in each scene. The link to ViDMask dataset and the base codes are available at https://github.com/ViDMask/VidMask-code.git.

4.
Sustain Cities Soc ; 85: 104064, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1956334

ABSTRACT

Since the start of the COVID-19 pandemic, social distancing (SD) has played an essential role in controlling and slowing down the spread of the virus in smart cities. To ensure the respect of SD in public areas, visual SD monitoring (VSDM) provides promising opportunities by (i) controlling and analyzing the physical distance between pedestrians in real-time, (ii) detecting SD violations among the crowds, and (iii) tracking and reporting individuals violating SD norms. To the authors' best knowledge, this paper proposes the first comprehensive survey of VSDM frameworks and identifies their challenges and future perspectives. Typically, we review existing contributions by presenting the background of VSDM, describing evaluation metrics, and discussing SD datasets. Then, VSDM techniques are carefully reviewed after dividing them into two main categories: hand-crafted feature-based and deep-learning-based methods. A significant focus is paid to convolutional neural networks (CNN)-based methodologies as most of the frameworks have used either one-stage, two-stage, or multi-stage CNN models. A comparative study is also conducted to identify their pros and cons. Thereafter, a critical analysis is performed to highlight the issues and impediments that hold back the expansion of VSDM systems. Finally, future directions attracting significant research and development are derived.

5.
Cognit Comput ; 14(5): 1752-1772, 2022.
Article in English | MEDLINE | ID: covidwho-1943282

ABSTRACT

Novel coronavirus disease (COVID-19) is an extremely contagious and quickly spreading coronavirus infestation. Severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), which outbreak in 2002 and 2011, and the current COVID-19 pandemic are all from the same family of coronavirus. This work aims to classify COVID-19, SARS, and MERS chest X-ray (CXR) images using deep convolutional neural networks (CNNs). To the best of our knowledge, this classification scheme has never been investigated in the literature. A unique database was created, so-called QU-COVID-family, consisting of 423 COVID-19, 144 MERS, and 134 SARS CXR images. Besides, a robust COVID-19 recognition system was proposed to identify lung regions using a CNN segmentation model (U-Net), and then classify the segmented lung images as COVID-19, MERS, or SARS using a pre-trained CNN classifier. Furthermore, the Score-CAM visualization method was utilized to visualize classification output and understand the reasoning behind the decision of deep CNNs. Several deep learning classifiers were trained and tested; four outperforming algorithms were reported: SqueezeNet, ResNet18, InceptionV3, and DenseNet201. Original and preprocessed images were used individually and all together as the input(s) to the networks. Two recognition schemes were considered: plain CXR classification and segmented CXR classification. For plain CXRs, it was observed that InceptionV3 outperforms other networks with a 3-channel scheme and achieves sensitivities of 99.5%, 93.1%, and 97% for classifying COVID-19, MERS, and SARS images, respectively. In contrast, for segmented CXRs, InceptionV3 outperformed using the original CXR dataset and achieved sensitivities of 96.94%, 79.68%, and 90.26% for classifying COVID-19, MERS, and SARS images, respectively. The classification performance degrades with segmented CXRs compared to plain CXRs. However, the results are more reliable as the network learns from the main region of interest, avoiding irrelevant non-lung areas (heart, bones, or text), which was confirmed by the Score-CAM visualization. All networks showed high COVID-19 detection sensitivity (> 96%) with the segmented lung images. This indicates the unique radiographic signature of COVID-19 cases in the eyes of AI, which is often a challenging task for medical doctors.

6.
Displays ; 2022.
Article in English | EuropePMC | ID: covidwho-1837647

ABSTRACT

The COVID-19 outbreak has extenuated the need for a monitoring system that can monitor face mask adherence and social distancing with the use of AI. Taking advantage of the existing video surveillance system, a deep learning based method for mask detection and social distancing is proposed. State-of-the-art object detection and recognition models such as Mask RCNN, YOLOv4, YOLOv5, and YOLOR were trained for mask detection and evaluated on the existing datasets and a proposed video mask detection dataset. The obtained results achieved a comparatively high mean average precision. After mask detection, the distance between people’s faces is measured. Furthermore, a new large-scale mask dataset from videos named VIDMASK is introduced. This diversifies the subjects in terms of pose, environment, quality of image, and versatile subject’ characteristics, producing a challenging dataset. The tested models succeed in detecting the face masks with high performance on the existing dataset, MOXA. However, with the VIDMASK dataset, the performance of these models is less accurate because of the complexity of the dataset and the number of people in each scene. The link to ViDMask dataset and the base codes are available at https://github.com/ViDMask/VidMask-code.git.

7.
Diagnostics (Basel) ; 12(4)2022 Apr 07.
Article in English | MEDLINE | ID: covidwho-1785560

ABSTRACT

Problem-Since the outbreak of the COVID-19 pandemic, mass testing has become essential to reduce the spread of the virus. Several recent studies suggest that a significant number of COVID-19 patients display no physical symptoms whatsoever. Therefore, it is unlikely that these patients will undergo COVID-19 testing, which increases their chances of unintentionally spreading the virus. Currently, the primary diagnostic tool to detect COVID-19 is a reverse-transcription polymerase chain reaction (RT-PCR) test from the respiratory specimens of the suspected patient, which is invasive and a resource-dependent technique. It is evident from recent researches that asymptomatic COVID-19 patients cough and breathe in a different way than healthy people. Aim-This paper aims to use a novel machine learning approach to detect COVID-19 (symptomatic and asymptomatic) patients from the convenience of their homes so that they do not overburden the healthcare system and also do not spread the virus unknowingly by continuously monitoring themselves. Method-A Cambridge University research group shared such a dataset of cough and breath sound samples from 582 healthy and 141 COVID-19 patients. Among the COVID-19 patients, 87 were asymptomatic while 54 were symptomatic (had a dry or wet cough). In addition to the available dataset, the proposed work deployed a real-time deep learning-based backend server with a web application to crowdsource cough and breath datasets and also screen for COVID-19 infection from the comfort of the user's home. The collected dataset includes data from 245 healthy individuals and 78 asymptomatic and 18 symptomatic COVID-19 patients. Users can simply use the application from any web browser without installation and enter their symptoms, record audio clips of their cough and breath sounds, and upload the data anonymously. Two different pipelines for screening were developed based on the symptoms reported by the users: asymptomatic and symptomatic. An innovative and novel stacking CNN model was developed using three base learners from of eight state-of-the-art deep learning CNN algorithms. The stacking CNN model is based on a logistic regression classifier meta-learner that uses the spectrograms generated from the breath and cough sounds of symptomatic and asymptomatic patients as input using the combined (Cambridge and collected) dataset. Results-The stacking model outperformed the other eight CNN networks with the best classification performance for binary classification using cough sound spectrogram images. The accuracy, sensitivity, and specificity for symptomatic and asymptomatic patients were 96.5%, 96.42%, and 95.47% and 98.85%, 97.01%, and 99.6%, respectively. For breath sound spectrogram images, the metrics for binary classification of symptomatic and asymptomatic patients were 91.03%, 88.9%, and 91.5% and 80.01%, 72.04%, and 82.67%, respectively. Conclusion-The web-application QUCoughScope records coughing and breathing sounds, converts them to a spectrogram, and applies the best-performing machine learning model to classify the COVID-19 patients and healthy subjects. The result is then reported back to the test user in the application interface. Therefore, this novel system can be used by patients in their premises as a pre-screening method to aid COVID-19 diagnosis by prioritizing the patients for RT-PCR testing and thereby reducing the risk of spreading of the disease.

8.
Curr Probl Cardiol ; : 101177, 2022 Mar 25.
Article in English | MEDLINE | ID: covidwho-1757249

ABSTRACT

This study answers the question of whether the health care costs of managing COVID-19 in preexisting cardiovascular diseases (CVD) patients increased or decreased as a consequence of evidence-based efforts to optimize the initial COVID-19 management protocol in a CVD group of patients. A retrospective cohort study was conducted in preexisting CVD patients with COVID-19 in Hamad Medical Corporation, Qatar. From the health care perspective, only direct medical costs were considered, adjusted to their 2021 values. The impact of revising the protocol was a reduction in the overall costs in non-critically ill patients from QAR15,447 (USD 4243) to QAR4337 (USD 1191) per patient, with an economic benefit of QAR11,110 (USD 3051). In the critically ill patients, however, the cost increased from QAR202,094 (USD 55,505) to QAR292,856 (USD 80,433) per patient, with added cost of QAR90,762 (USD 24,928). Overall, regardless of critical care status, the optimization of the initial COVID-19 protocols in patients with preexisting CVD did not reduce overall health care costs, but increased it by QAR80,529 (USD 22,117) per patient.

9.
Comput Biol Med ; 142: 105188, 2022 03.
Article in English | MEDLINE | ID: covidwho-1588023

ABSTRACT

The coronavirus outbreak continues to spread around the world and no one knows when it will stop. Therefore, from the first day of the identification of the virus in Wuhan, China, scientists have launched numerous research projects to understand the nature of the virus, how to detect it, and search for the most effective medicine to help and protect patients. Importantly, a rapid diagnostic and detection system is a priority and should be developed to stop COVID-19 from spreading. Medical imaging techniques have been used for this purpose. Current research is focused on exploiting different backbones like VGG, ResNet, DenseNet, or combining them to detect COVID-19. By using these backbones many aspects cannot be analyzed like the spatial and contextual information in the images, although this information can be useful for more robust detection performance. In this paper, we used 3D representation of the data as input for the proposed 3DCNN-based deep learning model. The process includes using the Bi-dimensional Empirical Mode Decomposition (BEMD) technique to decompose the original image into IMFs, and then building a video of these IMF images. The formed video is used as input for the 3DCNN model to classify and detect the COVID-19 virus. The 3DCNN model consists of a 3D VGG-16 backbone followed by a Context-aware attention (CAA) module, and then fully connected layers for classification. Each CAA module takes the feature maps of different blocks of the backbone, which allows learning from different feature maps. In our experiments, we used 6484 X-ray images, of which 1802 were COVID-19 positive cases, 1910 normal cases, and 2772 pneumonia cases. The experiment results showed that our proposed technique achieved the desired results on the selected dataset. Additionally, the use of the 3DCNN model with contextual information processing exploited CAA networks to achieve better performance.


Subject(s)
COVID-19 , Deep Learning , Algorithms , Humans , Neural Networks, Computer , SARS-CoV-2
10.
SN Comput Sci ; 3(1): 13, 2022.
Article in English | MEDLINE | ID: covidwho-1491546

ABSTRACT

The novelty of the COVID-19 Disease and the speed of spread, created colossal chaotic, impulse all the worldwide researchers to exploit all resources and capabilities to understand and analyze characteristics of the coronavirus in terms of spread ways and virus incubation time. For that, the existing medical features such as CT-scan and X-ray images are used. For example, CT-scan images can be used for the detection of lung infection. However, the quality of these images and infection characteristics limit the effectiveness of these features. Using artificial intelligence (AI) tools and computer vision algorithms, the accuracy of detection can be more accurate and can help to overcome these issues. In this paper, we propose a multi-task deep-learning-based method for lung infection segmentation on CT-scan images. Our proposed method starts by segmenting the lung regions that may be infected. Then, segmenting the infections in these regions. In addition, to perform a multi-class segmentation the proposed model is trained using the two-stream inputs. The multi-task learning used in this paper allows us to overcome the shortage of labeled data. In addition, the multi-input stream allows the model to learn from many features that can improve the results. To evaluate the proposed method, many metrics have been used including Sorensen-Dice similarity, Sensitivity, Specificity, Precision, and MAE metrics. As a result of experiments, the proposed method can segment lung infections with high performance even with the shortage of data and labeled images. In addition, comparing with the state-of-the-art method our method achieves good performance results. For example, the proposed method reached 78..6% for Dice, 71.1% for Sensitivity metric, 99.3% for Specificity 85.6% for Precision, and 0.062 for Mean Average Error metric, which demonstrates the effectiveness of the proposed method for lung infection segmentation.

11.
Comput Biol Med ; 139: 105002, 2021 12.
Article in English | MEDLINE | ID: covidwho-1487672

ABSTRACT

The immense spread of coronavirus disease 2019 (COVID-19) has left healthcare systems incapable to diagnose and test patients at the required rate. Given the effects of COVID-19 on pulmonary tissues, chest radiographic imaging has become a necessity for screening and monitoring the disease. Numerous studies have proposed Deep Learning approaches for the automatic diagnosis of COVID-19. Although these methods achieved outstanding performance in detection, they have used limited chest X-ray (CXR) repositories for evaluation, usually with a few hundred COVID-19 CXR images only. Thus, such data scarcity prevents reliable evaluation of Deep Learning models with the potential of overfitting. In addition, most studies showed no or limited capability in infection localization and severity grading of COVID-19 pneumonia. In this study, we address this urgent need by proposing a systematic and unified approach for lung segmentation and COVID-19 localization with infection quantification from CXR images. To accomplish this, we have constructed the largest benchmark dataset with 33,920 CXR images, including 11,956 COVID-19 samples, where the annotation of ground-truth lung segmentation masks is performed on CXRs by an elegant human-machine collaborative approach. An extensive set of experiments was performed using the state-of-the-art segmentation networks, U-Net, U-Net++, and Feature Pyramid Networks (FPN). The developed network, after an iterative process, reached a superior performance for lung region segmentation with Intersection over Union (IoU) of 96.11% and Dice Similarity Coefficient (DSC) of 97.99%. Furthermore, COVID-19 infections of various shapes and types were reliably localized with 83.05% IoU and 88.21% DSC. Finally, the proposed approach has achieved an outstanding COVID-19 detection performance with both sensitivity and specificity values above 99%.


Subject(s)
COVID-19 , Humans , Lung/diagnostic imaging , SARS-CoV-2 , Thorax , X-Rays
12.
Applied Sciences ; 11(17):8039, 2021.
Article in English | MDPI | ID: covidwho-1390516

ABSTRACT

Pneumonia is a lung infection that threatens all age groups. In this paper, we use CT scans to investigate the effectiveness of active contour models (ACMs) for segmentation of pneumonia caused by the Coronavirus disease (COVID-19) as one of the successful methods for image segmentation. A comparison has been made between the performances of the state-of-the-art methods performed based on a database of lung CT scan images. This review helps the reader to identify starting points for research in the field of active contour models on COVID-19, which is a high priority for researchers and practitioners. Finally, the experimental results indicate that active contour methods achieve promising results when there are not enough images to use deep learning-based methods as one of the powerful tools for image segmentation.

13.
IEEE Access ; 9: 120422-120441, 2021.
Article in English | MEDLINE | ID: covidwho-1373729

ABSTRACT

The coronavirus disease 2019 (COVID-19) after outbreaking in Wuhan increasingly spread throughout the world. Fast, reliable, and easily accessible clinical assessment of the severity of the disease can help in allocating and prioritizing resources to reduce mortality. The objective of the study was to develop and validate an early scoring tool to stratify the risk of death using readily available complete blood count (CBC) biomarkers. A retrospective study was conducted on twenty-three CBC blood biomarkers for predicting disease mortality for 375 COVID-19 patients admitted to Tongji Hospital, China from January 10 to February 18, 2020. Machine learning based key biomarkers among the CBC parameters as the mortality predictors were identified. A multivariate logistic regression-based nomogram and a scoring system was developed to categorize the patients in three risk groups (low, moderate, and high) for predicting the mortality risk among COVID-19 patients. Lymphocyte count, neutrophils count, age, white blood cell count, monocytes (%), platelet count, red blood cell distribution width parameters collected at hospital admission were selected as important biomarkers for death prediction using random forest feature selection technique. A CBC score was devised for calculating the death probability of the patients and was used to categorize the patients into three sub-risk groups: low (<=5%), moderate (>5% and <=50%), and high (>50%), respectively. The area under the curve (AUC) of the model for the development and internal validation cohort were 0.961 and 0.88, respectively. The proposed model was further validated with an external cohort of 103 patients of Dhaka Medical College, Bangladesh, which exhibits in an AUC of 0.963. The proposed CBC parameter-based prognostic model and the associated web-application, can help the medical doctors to improve the management by early prediction of mortality risk of the COVID-19 patients in the low-resource countries.

14.
Comput Biol Med ; 132: 104319, 2021 05.
Article in English | MEDLINE | ID: covidwho-1163581

ABSTRACT

Computer-aided diagnosis for the reliable and fast detection of coronavirus disease (COVID-19) has become a necessity to prevent the spread of the virus during the pandemic to ease the burden on the healthcare system. Chest X-ray (CXR) imaging has several advantages over other imaging and detection techniques. Numerous works have been reported on COVID-19 detection from a smaller set of original X-ray images. However, the effect of image enhancement and lung segmentation of a large dataset in COVID-19 detection was not reported in the literature. We have compiled a large X-ray dataset (COVQU) consisting of 18,479 CXR images with 8851 normal, 6012 non-COVID lung infections, and 3616 COVID-19 CXR images and their corresponding ground truth lung masks. To the best of our knowledge, this is the largest public COVID positive database and the lung masks. Five different image enhancement techniques: histogram equalization (HE), contrast limited adaptive histogram equalization (CLAHE), image complement, gamma correction, and balance contrast enhancement technique (BCET) were used to investigate the effect of image enhancement techniques on COVID-19 detection. A novel U-Net model was proposed and compared with the standard U-Net model for lung segmentation. Six different pre-trained Convolutional Neural Networks (CNNs) (ResNet18, ResNet50, ResNet101, InceptionV3, DenseNet201, and ChexNet) and a shallow CNN model were investigated on the plain and segmented lung CXR images. The novel U-Net model showed an accuracy, Intersection over Union (IoU), and Dice coefficient of 98.63%, 94.3%, and 96.94%, respectively for lung segmentation. The gamma correction-based enhancement technique outperforms other techniques in detecting COVID-19 from the plain and the segmented lung CXR images. Classification performance from plain CXR images is slightly better than the segmented lung CXR images; however, the reliability of network performance is significantly improved for the segmented lung images, which was observed using the visualization technique. The accuracy, precision, sensitivity, F1-score, and specificity were 95.11%, 94.55%, 94.56%, 94.53%, and 95.59% respectively for the segmented lung images. The proposed approach with very reliable and comparable performance will boost the fast and robust COVID-19 detection using chest X-ray images.


Subject(s)
COVID-19 , Deep Learning , Humans , Image Enhancement , Reproducibility of Results , SARS-CoV-2 , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL